Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for yy. \newline4log5(y+2)=84 \, \log_5 (y+2) = 8 \newlineWrite your answer in simplest form.

Full solution

Q. Solve for yy. \newline4log5(y+2)=84 \, \log_5 (y+2) = 8 \newlineWrite your answer in simplest form.
  1. Isolate logarithm: Isolate the logarithm by dividing both sides by 44.\newlinelog5(y+2)=84 \log_5(y+2) = \frac{8}{4} \newlinelog5(y+2)=2 \log_5(y+2) = 2
  2. Rewrite in exponential form: Rewrite the logarithmic equation in exponential form.\newliney+2=52 y + 2 = 5^2 \newliney+2=25 y + 2 = 25
  3. Solve for y: Solve for y by subtracting 22 from both sides.\newliney=252 y = 25 - 2 \newliney=23 y = 23

More problems from Multiply and divide complex numbers