Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for xx.\newlinex(x + 6) < 0\newlineWrite a compound inequality like 1 < x < 3 or like x < 1 or x > 3.______

Full solution

Q. Solve for xx.\newlinex(x+6)<0x(x + 6) < 0\newlineWrite a compound inequality like 1<x<31 < x < 3 or like x<1x < 1 or x>3x > 3.______
  1. Find Zeros and Critical Points: Find the zeros of x(x+6)x(x + 6).
    x=0x = 0 or x+6=0x + 6 = 0
    x=0x = 0 or x=6x = -6
    Critical points: 0,60, -6
  2. Determine Intervals: Determine the intervals using the critical points.\newlineIntervals: (,6)(-\infty, -6), (6,0)(-6, 0), (0,)(0, \infty)
  3. Test Interval (,6) (-\infty, -6) : Test the interval (,6) (-\infty, -6) to see if x(x+6) x(x + 6) is negative or positive.\newlinePick x=7 x = -7 : (7)(7+6)=(7)(1)=7 (-7)(-7 + 6) = (-7)(-1) = 7 , which is positive.
  4. Test Interval (6,0) (-6, 0) : Test the interval (6,0) (-6, 0) to see if x(x+6) x(x + 6) is negative or positive.\newlinePick x=3 x = -3 : (3)(3+6)=(3)(3)=9 (-3)(-3 + 6) = (-3)(3) = -9 , which is negative.
  5. Test Interval 0,):</b>Testtheinterval$0,)toseeif$x(x+6)0, \infty):</b> Test the interval \$0, \infty) to see if \$x(x + 6) is negative or positive.\newlinePick x=1x = 1: 1)(1+6)=(1)(7)=71)(1 + 6) = (1)(7) = 7, which is positive.
  6. Identify Negative Intervals: Since we want x(x + 6) < 0, we look for intervals where the product is negative.\newlineThe interval (6,0)(-6, 0) is where x(x+6)x(x + 6) is negative.\newlineCompound inequality: -6 < x < 0

More problems from Solve quadratic inequalities