Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for xx.\newlinex(x - 5) > 0\newlineWrite a compound inequality like 1 < x < 3 or like x < 1 or x > 3.______

Full solution

Q. Solve for xx.\newlinex(x5)>0x(x - 5) > 0\newlineWrite a compound inequality like 1<x<31 < x < 3 or like x<1x < 1 or x>3x > 3.______
  1. Find Critical Points: Find the critical points of x(x5)x(x - 5). \newlinex(x5)=0x(x - 5) = 0\newlinex=0x = 0 or x5=0x - 5 = 0\newlinex=5x = 5\newlineCritical points: 0,50, 5
  2. Identify Intervals: Identify the intervals using the critical points.\newline00 and 55 divide the number line into three parts.\newlineIntervals: (,0(-\infty, 0), (0,5)(0, 5), (5,)(5, \infty)
  3. Check Sign (,0)(-\infty, 0): Check the sign of x(x5)x(x - 5) over (,0)(-\infty, 0).\newlineSign of xx: -\newlineSign of (x5)(x - 5): -\newlineSign of x(x5)x(x - 5): ((-(-) = +)
  4. Check Sign (0,5)(0, 5): Check the sign of x(x5)x(x - 5) over (0,5)(0, 5).\newlineSign of xx: +\newlineSign of (x5)(x - 5): -\newlineSign of x(x5)x(x - 5): (+)()=(+)(-) = -
  5. Check Sign 5,):</b>Checkthesignof$x(x5)5, \infty):</b> Check the sign of \$x(x - 5) over 5, \infty)\.\(\newlineSign of \$x\): +\(\newline\)Sign of \(x - 5\): +\(\newline\)Sign of \(x(x - 5)\): \(+(+) = +\)
  6. Positive Intervals: \(x(x - 5)\) is positive over \((-\infty, 0)\) and \((5, \infty)\).\(\newline\)Compound inequality: \(x < 0\) or \(x > 5\)

More problems from Solve quadratic inequalities