Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for xx.\newlinex(x + 4) > 0\newlineWrite a compound inequality like 1 < x < 3 or like x < 1 or x > 3.

Full solution

Q. Solve for xx.\newlinex(x+4)>0x(x + 4) > 0\newlineWrite a compound inequality like 1<x<31 < x < 3 or like x<1x < 1 or x>3x > 3.
  1. Find Critical Points: Find the critical points of x(x+4)x(x + 4). \newlinex(x+4)=0x(x + 4) = 0\newlinex=0 or x+4=0x = 0 \text{ or } x + 4 = 0\newlinex=4x = -4\newlineCritical points: 0,40, -4
  2. Identify Intervals: Identify the intervals using the critical points.\newline4-4 and 00 divide the number line into three parts.\newlineIntervals: (,4(-\infty, -4), (4,0(-4, 0), (0,)(0, \infty)
  3. Check Sign (,4)(-\infty, -4): Check the sign of x(x+4)x(x + 4) over (,4)(-\infty, -4).\newlineSign of xx: -\newlineSign of (x+4)(x + 4): -\newlineSign of x(x+4)x(x + 4): ((-(-) = +\)
  4. Check Sign (4,0) (-4, 0) : Check the sign of x(x+4)x(x + 4) over (4,0) (-4, 0) .\newlineSign of xx: -\newlineSign of x+4x + 4: +\newlineSign of x(x+4)x(x + 4): ()(+)= (-)(+) = -
  5. Check Sign 0,):</b>Checkthesignof$x(x+4)0, \infty):</b> Check the sign of \$x(x + 4) over 0,0, \infty.\newlineSign of xx: +\newlineSign of x+4x + 4: +\newlineSign of x(x+4)x(x + 4): +(+)=++(+) = +
  6. Positive Intervals: x(x+4)x(x + 4) is positive over (,4)(-\infty, -4) and (0,)(0, \infty).\newlineCompound inequality: x < -4 or x > 0

More problems from Solve quadratic inequalities