Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for xx.\newlinex(x2)0x(x - 2) \geq 0\newlineWrite a compound inequality like 1 < x < 3 or like x < 1 or x > 3.

Full solution

Q. Solve for xx.\newlinex(x2)0x(x - 2) \geq 0\newlineWrite a compound inequality like 1<x<31 < x < 3 or like x<1x < 1 or x>3x > 3.
  1. Find Critical Points: Find the critical points of x(x2)x(x - 2). \newlinex(x2)=0x(x - 2) = 0\newlinex=0 or x2=0x = 0 \text{ or } x - 2 = 0\newlinex=0 or x=2x = 0 \text{ or } x = 2\newlineCritical points: 0,20, 2
  2. Identify Intervals: Identify the intervals using the critical points.\newline00 and 22 divide the number line into three parts.\newlineIntervals: (,0(-\infty, 0), (0,2)(0, 2), (2,)(2, \infty)
  3. Determine Sign: Determine the sign of x(x2)x(x - 2) over (,0)(-\infty, 0).\newlineSign of xx: -\newlineSign of (x2)(x - 2): -\newlineSign of x(x2)x(x - 2): ()()=+(-)(-) = +
  4. Determine Sign: Determine the sign of x(x2)x(x - 2) over (0,2)(0, 2).\newlineSign of xx: ++\newlineSign of (x2)(x - 2): -\newlineSign of x(x2)x(x - 2): (+)()=(+)(-) = -
  5. Determine Sign: Determine the sign of x(x2)x(x - 2) over (2,)(2, \infty).\newlineSign of xx: +\newlineSign of (x2)(x - 2): +\newlineSign of x(x2)x(x - 2): (+)(+)(+)(+) = +
  6. Determine Inequality: x(x2)x(x - 2) is greater than or equal to 00 over (,0](-\infty, 0] and [2,)[2, \infty).\newlineCompound inequality: x0x \leq 0 or x2x \geq 2

More problems from Solve quadratic inequalities