Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for xx.\newlinex(x+2)0x(x + 2) \leq 0\newlineWrite a compound inequality like 1 < x < 3 or like x < 1 or x > 3.______

Full solution

Q. Solve for xx.\newlinex(x+2)0x(x + 2) \leq 0\newlineWrite a compound inequality like 1<x<31 < x < 3 or like x<1x < 1 or x>3x > 3.______
  1. Find Critical Points: Find the critical points of x(x+2)x(x + 2). \newlinex(x+2)=0x(x + 2) = 0\newlinex=0 or x+2=0x = 0 \text{ or } x + 2 = 0\newlinex=0 or x=2x = 0 \text{ or } x = -2\newlineCritical points: 0,20, -2
  2. Identify Intervals: Identify the intervals using the critical points.\newline2-2 and 00 divide the number line into three parts.\newlineIntervals: (-\(\newline∞, -2), (-2, 0), (0, ∞)\)
  3. Sign Analysis (,2)(-\infty, -2): Determine the sign of x(x+2)x(x + 2) over (,2)(-\infty, -2).\newlineSign of xx: -\newlineSign of (x+2)(x + 2): -\newlineSign of x(x+2)x(x + 2): ((-(-) = +\)
  4. Sign Analysis (2,0)(-2, 0): Determine the sign of x(x+2)x(x + 2) over (2,0)(-2, 0).\newlineSign of xx: -\newlineSign of (x+2)(x + 2): +\newlineSign of x(x+2)x(x + 2): ((-(+) = -)
  5. Sign Analysis (0,):(0, \infty): Determine the sign of x(x+2)x(x + 2) over (0,)(0, \infty).\newlineSign of xx: +\newlineSign of (x+2)(x + 2): +\newlineSign of x(x+2)x(x + 2): (+)(+)=+(+)(+) = +
  6. Non-Positive Range: x(x+2)x(x + 2) is non-positive over (2,0)(-2, 0).\newlineCompound inequality: 2x0-2 \leq x \leq 0

More problems from Solve quadratic inequalities