Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for xx.\newlinex(x+2)0x(x + 2) \geq 0\newlineWrite a compound inequality like 1 < x < 3 or like x < 1 or x > 3.

Full solution

Q. Solve for xx.\newlinex(x+2)0x(x + 2) \geq 0\newlineWrite a compound inequality like 1<x<31 < x < 3 or like x<1x < 1 or x>3x > 3.
  1. Find Zeros: Find the zeros of x(x+2)x(x + 2). \newlinex(x+2)=0x(x + 2) = 0\newlinex=0x = 0 or x+2=0x + 2 = 0\newlinex=0x = 0 or x=2x = -2\newlineCritical points: 0,20, -2
  2. Determine Intervals: Determine the intervals using the critical points.\newlineIntervals: (,2)(-\infty, -2), (2,0)(-2, 0), (0,)(0, \infty)
  3. Test Interval (,2) (-\infty, -2) : Test the interval (,2) (-\infty, -2) to see if x(x+2) x(x + 2) is positive or negative.\newlineChoose x=3 x = -3 : (3)(3+2)=(3)(1)=3 (-3)(-3 + 2) = (-3)(-1) = 3 , which is positive.
  4. Test Interval (2,0) (-2, 0) : Test the interval (2,0) (-2, 0) to see if x(x+2) x(x + 2) is positive or negative.\newlineChoose x=1 x = -1 : (1)(1+2)=(1)(1)=1 (-1)(-1 + 2) = (-1)(1) = -1 , which is negative.
  5. Test Interval 0,):</b>Testtheinterval$0,)toseeif$x(x+2)0, \infty):</b> Test the interval \$0, \infty) to see if \$x(x + 2) is positive or negative.\newlineChoose x=1x = 1: 1)(1+2)=(1)(3)=31)(1 + 2) = (1)(3) = 3, which is positive.
  6. Combine Intervals: Combine the intervals where x(x+2)x(x + 2) is positive or zero.\newlinex(x+2)x(x + 2) is greater than or equal to 00 for xx in (,2](-\infty, -2] and [0,)[0, \infty).\newlineCompound inequality: x2x \leq -2 or x0x \geq 0

More problems from Solve quadratic inequalities