Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for xx.\newline(x+2)(x+3)0 (x + 2)(x + 3) \geq 0 \newlineWrite a compound inequality like 1 < x < 3 or like x < 1 or x > 3.

Full solution

Q. Solve for xx.\newline(x+2)(x+3)0 (x + 2)(x + 3) \geq 0 \newlineWrite a compound inequality like 1<x<31 < x < 3 or like x<1x < 1 or x>3x > 3.
  1. Find Critical Points: Find the critical points of (x+2)(x+3)(x + 2)(x + 3).(x+2)(x+3)=0(x + 2)(x + 3) = 0x+2=0x + 2 = 0 implies x=2x = -2.x+3=0x + 3 = 0 implies x=3x = -3.Critical points: 2,3-2, -3
  2. Identify Intervals: Identify the intervals using the critical points.\newline3-3 and 2-2 divide the number line into three parts.\newlineIntervals: (-\(\newline∞, -3), (-3, -2), (-2, ∞)\)
  3. Check Sign (,3)(-\infty, -3): Check the sign of (x+2)(x+3)(x + 2)(x + 3) over (,3)(-\infty, -3).\newlineSign of (x+2)(x + 2): -\newlineSign of (x+3)(x + 3): -\newlineSign of (x+2)(x+3)(x + 2)(x + 3): ((-(-) = +
  4. Check Sign (3,2)(-3, -2): Check the sign of (x+2)(x+3)(x + 2)(x + 3) over (3,2)(-3, -2).\newlineSign of (x+2)(x + 2): -\newlineSign of (x+3)(x + 3): +\newlineSign of (x+2)(x+3)(x + 2)(x + 3): ((-(+) = -
  5. Check Sign (2,): (-2, \infty): Check the sign of (x+2)(x+3) (x + 2)(x + 3) over (2,). (-2, \infty).\newlineSign of (x+2):+ (x + 2): +\newlineSign of (x+3):+ (x + 3): +\newlineSign of (x + \(2)(x + 33): (+)(+) = +\
  6. Compound Inequality: (x+2)(x+3)(x + 2)(x + 3) is greater than or equal to 00 over (,3)(-\infty, -3) or (2,)(-2, \infty).\newlineCompound inequality: x3x \leq -3 or x2x \geq -2

More problems from Solve quadratic inequalities