Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for xx.\newline(x2)(x3)0 (x - 2)(x - 3) \leq 0 \newlineWrite a compound inequality like 1 < x < 3 or like x < 1 or x > 3.______

Full solution

Q. Solve for xx.\newline(x2)(x3)0 (x - 2)(x - 3) \leq 0 \newlineWrite a compound inequality like 1<x<31 < x < 3 or like x<1x < 1 or x>3x > 3.______
  1. Find Critical Points: Find the critical points of (x2)(x3)(x - 2)(x - 3).(x2)(x3)=0(x - 2)(x - 3) = 0x2=0x - 2 = 0 implies x=2x = 2.x3=0x - 3 = 0 implies x=3x = 3.Critical points: 2,32, 3.
  2. Identify Intervals: Identify the intervals using the critical points.\newline22 and 33 divide the number line into three parts.\newlineIntervals: (,2(-\infty, 2), (2,3)(2, 3), (3,)(3, \infty).
  3. Test Sign (,2) (-\infty, 2) : Test the sign of (x2)(x3) (x - 2)(x - 3) over (,2) (-\infty, 2) .\newlinePick x=1 x = 1 (which is in the interval).\newlineSign of (x2) (x - 2) : -.\newlineSign of (x3) (x - 3) : -.\newlineSign of (x2)(x3) (x - 2)(x - 3) : ()()=+ (-)(-) = + .
  4. Test Sign (2,3)(2, 3): Test the sign of (x2)(x3)(x - 2)(x - 3) over (2,3)(2, 3).\newlinePick x=2.5x = 2.5 (which is in the interval).\newlineSign of (x2)(x - 2): +.\newlineSign of (x3)(x - 3): -.\newlineSign of (x2)(x3)(x - 2)(x - 3): (+)()=(+)(-) = -.
  5. Test Sign \(3, \infty): Test the sign of x - \(2)(x - 33) over \(3, \infty).\newlinePick x = \(4) (which is in the interval).\newlineSign of x - \(2): +.\newlineSign of x - \(3): +.\newlineSign of x - \(2)(x - 33): (+)(+) = +.
  6. Compound Inequality: (x2)(x3)0(x - 2)(x - 3) \leq 0. Find the solution as a compound inequality. (x2)(x3)(x - 2)(x - 3) is non-positive over [2,3][2, 3]. Compound inequality: 2x32 \leq x \leq 3.

More problems from Solve quadratic inequalities