Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for xx.\newline(x1)(x4)0 (x - 1)(x - 4) \geq 0 \newlineWrite a compound inequality like 1 < x < 3 or like x < 1 or x > 3.

Full solution

Q. Solve for xx.\newline(x1)(x4)0 (x - 1)(x - 4) \geq 0 \newlineWrite a compound inequality like 1<x<31 < x < 3 or like x<1x < 1 or x>3x > 3.
  1. Find Critical Points: Find the critical points of (x1)(x4)(x - 1)(x - 4).(x1)(x4)=0(x - 1)(x - 4) = 0x1=0x - 1 = 0 implies x=1x = 1.x4=0x - 4 = 0 implies x=4x = 4.Critical points: 11, 44
  2. Identify Intervals: Identify the intervals using the critical points.\newline11 and 44 divide the number line into three parts.\newlineIntervals: (,1(-\infty, 1), (1,4)(1, 4), (4,)(4, \infty)
  3. Check Sign (,1)(-\infty, 1): Check the sign of (x1)(x4)(x - 1)(x - 4) over (,1)(-\infty, 1).\newlineSign of (x1)(x - 1): -\newlineSign of (x4)(x - 4): -\newlineSign of (x1)(x4)(x - 1)(x - 4): ((-(-) = +
  4. Check Sign (1,4)(1, 4): Check the sign of (x1)(x4)(x - 1)(x - 4) over (1,4)(1, 4).\newlineSign of (x1)(x - 1): +\newlineSign of (x4)(x - 4): -\newlineSign of (x1)(x4)(x - 1)(x - 4): (+)()=(+)(-) = -
  5. Check Sign (4,):(4, \infty): Check the sign of (x1)(x4)(x - 1)(x - 4) over (4,)(4, \infty).\newlineSign of (x1)(x - 1): +\newlineSign of (x4)(x - 4): +\newlineSign of (x1)(x4)(x - 1)(x - 4): (+)(+)=+(+)(+) = +
  6. Compound Inequality: (x1)(x4)0(x - 1)(x - 4) \geq 0\newlineFind the solution as a compound inequality.\newline(x1)(x4)(x - 1)(x - 4) is non-negative over (,1](-\infty, 1] and [4,)[4, \infty).\newlineCompound inequality: x1x \leq 1 or x4x \geq 4

More problems from Solve quadratic inequalities