Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for xx.\newline(x1)(x2)0 (x - 1)(x - 2) \leq 0 \newlineWrite a compound inequality like 1 < x < 3 or like x < 1 or x > 3.______

Full solution

Q. Solve for xx.\newline(x1)(x2)0 (x - 1)(x - 2) \leq 0 \newlineWrite a compound inequality like 1<x<31 < x < 3 or like x<1x < 1 or x>3x > 3.______
  1. Find Critical Points: Find the critical points of (x1)(x2)(x - 1)(x - 2).(x1)(x2)=0(x - 1)(x - 2) = 0x1=0x - 1 = 0 implies x=1x = 1.x2=0x - 2 = 0 implies x=2x = 2.Critical points: 1,21, 2
  2. Identify Intervals: Identify the intervals using the critical points.\newline11 and 22 divide the number line into three parts.\newlineIntervals: (,1(-\infty, 1), (1,2)(1, 2), (2,)(2, \infty)
  3. Check Sign (,1)(-\infty, 1): Check the sign of (x1)(x2)(x - 1)(x - 2) over (,1)(-\infty, 1).\newlineSign of (x1)(x - 1): -\newlineSign of (x2)(x - 2): -\newlineSign of (x1)(x2)(x - 1)(x - 2): ((-(-) = +
  4. Check Sign (1,2)(1, 2): Check the sign of (x1)(x2)(x - 1)(x - 2) over (1,2)(1, 2).\newlineSign of (x1)(x - 1): +\newlineSign of (x2)(x - 2): -\newlineSign of (x1)(x2)(x - 1)(x - 2): (+)()=(+)(-) = -
  5. Check Sign (2,):(2, \infty): Check the sign of (x1)(x2)(x - 1)(x - 2) over (2,)(2, \infty).\newlineSign of (x1)(x - 1): +\newlineSign of (x2)(x - 2): +\newlineSign of (x1)(x2)(x - 1)(x - 2): (+)(+)=+(+)(+) = +
  6. Compound Inequality: x1)(x2)0(x - 1)(x - 2) \leq 0(\newlineFind the solution as a compound inequality.(\newline\)\$x - 1)(x - 2)\ is non-positive over \$1, 2\).(\newline\)Compound inequality: (1\) \leq x \leq \(2\)\

More problems from Solve quadratic inequalities