Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
x, rounding to the nearest hundredth.

3^(x)=58
Answer:

Solve for x x , rounding to the nearest hundredth.\newline3x=58 3^{x}=58 \newlineAnswer:

Full solution

Q. Solve for x x , rounding to the nearest hundredth.\newline3x=58 3^{x}=58 \newlineAnswer:
  1. Apply Logarithm: Apply the logarithm to both sides of the equation 3x=583^{x}=58.\newlinelog(3x)=log(58)\log(3^{x}) = \log(58)
  2. Use Power Property: Use the power property of logarithms to bring down the exponent.\newlinexlog(3)=log(58)x \cdot \log(3) = \log(58)
  3. Isolate xx: Isolate xx by dividing both sides of the equation by log(3)\log(3).\newlinex=log(58)log(3)x = \frac{\log(58)}{\log(3)}
  4. Calculate xx: Calculate the value of xx using a calculator.\newlinex=log(58)log(3)x = \frac{\log(58)}{\log(3)}\newlinex=1.76342799356293730.47712125471966244x = \frac{1.7634279935629373}{0.47712125471966244}\newlinex=3.6956521739130435x = 3.6956521739130435
  5. Round to Nearest Hundredth: Round the value of xx to the nearest hundredth.x3.70x \approx 3.70

More problems from Solve exponential equations using logarithms