Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
x, rounding to the nearest hundredth.

2^(2x)=5
Answer:

Solve for x x , rounding to the nearest hundredth.\newline22x=5 2^{2 x}=5 \newlineAnswer:

Full solution

Q. Solve for x x , rounding to the nearest hundredth.\newline22x=5 2^{2 x}=5 \newlineAnswer:
  1. Apply Logarithm: Apply the logarithm to both sides of the equation 22x=52^{2x} = 5.\newlinelog(22x)=log(5)\log(2^{2x}) = \log(5)
  2. Use Power Property: Use the power property of logarithms to bring down the exponent. 2xlog(2)=log(5)2x \cdot \log(2) = \log(5)
  3. Isolate x: Isolate x by dividing both sides of the equation by 2log(2)2 \cdot \log(2). \newlinex=log(5)2log(2)x = \frac{\log(5)}{2 \cdot \log(2)}
  4. Calculate x: Calculate the value of x using a calculator.\newlinex=log(5)2log(2)x = \frac{\log(5)}{2 \cdot \log(2)}\newlinex=0.6989720.30103x = \frac{0.69897}{2 \cdot 0.30103}\newlinex=0.698970.60206x = \frac{0.69897}{0.60206}\newlinex1.16096404744x \approx 1.16096404744
  5. Round to Nearest: Round the value of xx to the nearest hundredth.x1.16x \approx 1.16

More problems from Solve exponential equations using logarithms