Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
x and write your answer in simplest form.

-(5)/(4)-((3)/(4)x+5)+7x=-10 x
Answer: 
x=

Solve for x x and write your answer in simplest form.\newline54(34x+5)+7x=10x -\frac{5}{4}-\left(\frac{3}{4} x+5\right)+7 x=-10 x \newlineAnswer: x= x=

Full solution

Q. Solve for x x and write your answer in simplest form.\newline54(34x+5)+7x=10x -\frac{5}{4}-\left(\frac{3}{4} x+5\right)+7 x=-10 x \newlineAnswer: x= x=
  1. Write Equation: First, let's write down the equation and simplify it by distributing the negative sign and combining like terms.\newlineThe equation is: \newline(5)/(4)((3)/(4)x+5)+7x=10x-(5)/(4)-((3)/(4)x+5)+7x=-10x
  2. Distribute Negative Sign: Distribute the negative sign through the parentheses:\newline(5)/(4)(3)/(4)x5+7x=10x-(5)/(4) - (3)/(4)x - 5 + 7x = -10x
  3. Combine Like Terms: Combine like terms by adding (5)/(4)-(5)/(4) and 5-5, and also by combining 7x7x and 34x-\frac{3}{4}x:\newline545=54204=254-\frac{5}{4} - 5 = -\frac{5}{4} - \frac{20}{4} = -\frac{25}{4}\newline7x34x=284x34x=254x7x - \frac{3}{4}x = \frac{28}{4}x - \frac{3}{4}x = \frac{25}{4}x\newlineNow the equation looks like this:\newline254+254x=10x-\frac{25}{4} + \frac{25}{4}x = -10x
  4. Get X Terms Together: Next, we want to get all the x terms on one side and the constants on the other. To do this, we add 10x10x to both sides of the equation:\newline254+254x+10x=10x+10x-\frac{25}{4} + \frac{25}{4}x + 10x = -10x + 10x
  5. Isolate X Term: Simplify the equation by combining like terms:\newline254+254x+404x=0-\frac{25}{4} + \frac{25}{4}x + \frac{40}{4}x = 0\newline254+654x=0-\frac{25}{4} + \frac{65}{4}x = 0
  6. Solve for X: Now, isolate the x term by adding 254\frac{25}{4} to both sides:\newline254+254+654x=254-\frac{25}{4} + \frac{25}{4} + \frac{65}{4}x = \frac{25}{4}\newline654x=254\frac{65}{4}x = \frac{25}{4}
  7. Simplify Fraction: Finally, solve for x by dividing both sides by 654\frac{65}{4}:\newlinex=254÷654x = \frac{25}{4} \div \frac{65}{4}\newlinex=254×465x = \frac{25}{4} \times \frac{4}{65}\newlinex=25×44×65x = \frac{25 \times 4}{4 \times 65}\newlinex=2565x = \frac{25}{65}
  8. Simplify Fraction: Finally, solve for x by dividing both sides by 654\frac{65}{4}:\newlinex=254÷654x = \frac{25}{4} \div \frac{65}{4}\newlinex=254×465x = \frac{25}{4} \times \frac{4}{65}\newlinex=25×44×65x = \frac{25 \times 4}{4 \times 65}\newlinex=2565x = \frac{25}{65}Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 55:\newlinex=25÷565÷5x = \frac{25 \div 5}{65 \div 5}\newlinex=513x = \frac{5}{13}

More problems from Evaluate piecewise-defined functions