Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
y=(root(5)(x^(6)))/(3), find 
(dy)/(dx). Express your answer in radical form without using negative exponents, simplifying all fractions.
Answer: 
(dy)/(dx)=

Given the function y=x653 y=\frac{\sqrt[5]{x^{6}}}{3} , find dydx \frac{d y}{d x} . Express your answer in radical form without using negative exponents, simplifying all fractions.\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. Given the function y=x653 y=\frac{\sqrt[5]{x^{6}}}{3} , find dydx \frac{d y}{d x} . Express your answer in radical form without using negative exponents, simplifying all fractions.\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Rewrite function yy: To find the derivative of the function yy with respect to xx, we need to apply the power rule for differentiation. The function yy can be rewritten as y=x653y = \frac{x^{\frac{6}{5}}}{3}.
  2. Apply power rule: Differentiate the function with respect to xx using the power rule, which states that the derivative of xnx^n with respect to xx is nxn1n\cdot x^{n-1}. Here, nn is 65\frac{6}{5}.dydx=65x6513\frac{dy}{dx} = \frac{6}{5} \cdot \frac{x^{\frac{6}{5} - 1}}{3}
  3. Simplify derivative exponent: Simplify the exponent in the derivative. The new exponent will be 6555\frac{6}{5} - \frac{5}{5}, which is 15\frac{1}{5}. \newlinedydx=65x153\frac{dy}{dx} = \frac{\frac{6}{5} \cdot x^{\frac{1}{5}}}{3}
  4. Multiply coefficients: Simplify the fraction by multiplying the coefficients (65)(\frac{6}{5}) and (13)(\frac{1}{3}).dydx=(65)(13)x15\frac{dy}{dx} = \left(\frac{6}{5}\right) \cdot \left(\frac{1}{3}\right) \cdot x^{\frac{1}{5}}dydx=(25)x15\frac{dy}{dx} = \left(\frac{2}{5}\right) \cdot x^{\frac{1}{5}}
  5. Express in radical form: Express the final answer in radical form without using negative exponents. The fifth root of xx can be written as the radical expression x5\sqrt[5]{x}.\newlinedydx=25×x5\frac{dy}{dx} = \frac{2}{5} \times \sqrt[5]{x}

More problems from Evaluate piecewise-defined functions