Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
u.

3u^(2)=-7u-4

Solve for u u .\newline3u2=7u4 3 u^{2}=-7 u-4

Full solution

Q. Solve for u u .\newline3u2=7u4 3 u^{2}=-7 u-4
  1. Rearrange equation to set zero: Step 11: Rearrange the equation to set it to zero.\newlineMove all terms to one side of the equation to form a standard quadratic equation.\newline3u2+7u+4=03u^2 + 7u + 4 = 0
  2. Use quadratic formula to solve: Step 22: Use the quadratic formula to solve for uu. The quadratic formula is u=b±b24ac2au = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=3a = 3, b=7b = 7, and c=4c = 4. u=(7)±(7)243423u = \frac{-(7) \pm \sqrt{(7)^2 - 4\cdot3\cdot4}}{2\cdot3}
  3. Calculate the discriminant: Step 33: Calculate the discriminant (b24ac)(b^2 - 4ac).\newlineDiscriminant = (7)2434=4948=1(7)^2 - 4\cdot3\cdot4 = 49 - 48 = 1
  4. Substitute back into formula: Step 44: Substitute the discriminant back into the quadratic formula.\newlineu=7±16u = \frac{-7 \pm \sqrt{1}}{6}\newlineu=7±16u = \frac{-7 \pm 1}{6}
  5. Solve for possible values: Step 55: Solve for the two possible values of uu.u=7+16=66=1u = \frac{{-7 + 1}}{{6}} = \frac{{-6}}{{6}} = -1u=716=86=43u = \frac{{-7 - 1}}{{6}} = \frac{{-8}}{{6}} = -\frac{4}{3}

More problems from Add, subtract, multiply, and divide polynomials