Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(7)(5x)-3log_(7)(2)=0
Answer:

Solve for the exact value of x x .\newlinelog7(5x)3log7(2)=0 \log _{7}(5 x)-3 \log _{7}(2)=0 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog7(5x)3log7(2)=0 \log _{7}(5 x)-3 \log _{7}(2)=0 \newlineAnswer:
  1. Apply Power Rule: Apply the power rule of logarithms to simplify the term with the coefficient.\newlineThe power rule of logarithms states that nlogb(a)=logb(an)n\log_b(a) = \log_b(a^n). Let's apply this to the term 3log7(2)3\log_7(2).\newlinePower rule application: 3log7(2)=log7(23)3\log_7(2) = \log_7(2^3)\newlineCalculation: 23=82^3 = 8
  2. Rewrite Equation: Rewrite the original equation using the result from Step 11.\newlineThe original equation log7(5x)3log7(2)=0\log_7(5x) - 3\log_7(2) = 0 becomes log7(5x)log7(8)=0\log_7(5x) - \log_7(8) = 0.
  3. Apply Quotient Rule: Apply the quotient rule of logarithms to combine the logarithms into a single logarithm.\newlineThe quotient rule of logarithms states that logb(a)logb(c)=logb(ac)\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right). Let's apply this to combine the logarithms.\newlineQuotient rule application: log7(5x)log7(8)=log7(5x8)\log_7(5x) - \log_7(8) = \log_7\left(\frac{5x}{8}\right)
  4. Set Equal to Base: Set the argument of the logarithm equal to the base raised to the power of the other side of the equation.\newlineSince log7(5x8)=0\log_7(\frac{5x}{8}) = 0, we can write this as 70=5x87^0 = \frac{5x}{8}.\newlineCalculation: 70=17^0 = 1
  5. Solve for x: Solve for x.\newlineWe have the equation 1=5x81 = \frac{5x}{8}. Multiply both sides by 88 to isolate xx.\newlineCalculation: 8×1=5x8 \times 1 = 5x
  6. Complete Calculation: Complete the calculation to find the value of xx.\newlineCalculation: 8=5x8 = 5x\newlineDivide both sides by 55 to solve for xx.\newlineCalculation: x=85x = \frac{8}{5}

More problems from Quotient property of logarithms