Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(6)(4x)+log_(6)(9)=3
Answer:

Solve for the exact value of x x .\newlinelog6(4x)+log6(9)=3 \log _{6}(4 x)+\log _{6}(9)=3 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog6(4x)+log6(9)=3 \log _{6}(4 x)+\log _{6}(9)=3 \newlineAnswer:
  1. Apply product rule of logarithms: Apply the product rule of logarithms to combine the two logarithmic terms.\newlineThe product rule of logarithms states that logb(m)+logb(n)=logb(mn)\log_b(m) + \log_b(n) = \log_b(m*n).\newlineTherefore, log6(4x)+log6(9)\log_6(4x) + \log_6(9) becomes log6(4x9)\log_6(4x \cdot 9).
  2. Simplify expression: Simplify the expression inside the logarithm.\newlineMultiplying 4x4x by 99 gives us 36x36x.\newlineSo, log6(4x×9)\log_6(4x \times 9) simplifies to log6(36x)\log_6(36x).
  3. Set equal to 33: Set the simplified logarithmic expression equal to 33. We now have the equation log6(36x)=3\log_6(36x) = 3.
  4. Convert to exponential form: Convert the logarithmic equation to its exponential form.\newlineThe exponential form of logb(a)=c\log_b(a) = c is bc=ab^c = a.\newlineSo, 63=36x6^3 = 36x.
  5. Calculate value of 636^3: Calculate the value of 636^3.\newline636^3 equals 216216.\newlineSo, we have 216=36x216 = 36x.
  6. Solve for x: Solve for x by dividing both sides of the equation by 3636.\newlineDividing 216216 by 3636 gives us x=21636x = \frac{216}{36}.
  7. Calculate exact value of x: Calculate the exact value of xx. 216216 divided by 3636 equals 66. So, x=6x = 6.

More problems from Quotient property of logarithms