Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(5)(7x)+2log_(5)(5)=4
Answer:

Solve for the exact value of x x .\newlinelog5(7x)+2log5(5)=4 \log _{5}(7 x)+2 \log _{5}(5)=4 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog5(7x)+2log5(5)=4 \log _{5}(7 x)+2 \log _{5}(5)=4 \newlineAnswer:
  1. Apply Power Rule: Apply the power rule of logarithms to simplify the second term.\newlineThe power rule of logarithms states that logb(ac)=clogb(a)\log_b(a^c) = c \cdot \log_b(a).\newline2log5(5)2\log_5(5) can be rewritten as log5(52)\log_5(5^2).\newlineCalculation: log5(52)=log5(25)\log_5(5^2) = \log_5(25).
  2. Substitute Simplified Term: Substitute the simplified second term back into the equation.\newlineThe equation now becomes log5(7x)+log5(25)=4\log_5(7x) + \log_5(25) = 4.
  3. Apply Product Rule: Apply the product rule of logarithms to combine the two logarithmic terms.\newlineThe product rule states that logb(a)+logb(c)=logb(ac)\log_b(a) + \log_b(c) = \log_b(a \cdot c).\newlineCombine the terms: log5(7x)+log5(25)=log5(7x25)\log_5(7x) + \log_5(25) = \log_5(7x \cdot 25).\newlineCalculation: log5(175x)=4\log_5(175x) = 4.
  4. Convert to Exponential Form: Convert the logarithmic equation to its exponential form.\newlineThe exponential form of logb(a)=c\log_b(a) = c is bc=ab^c = a.\newlineConvert the equation: 54=175x5^4 = 175x.\newlineCalculation: 625=175x625 = 175x.
  5. Solve for x: Solve for x.\newlineDivide both sides of the equation by 175175 to isolate xx.\newlineCalculation: x=625175x = \frac{625}{175}.\newlineCalculation: x=3.57142857143x = 3.57142857143 (This is a repeating decimal, so we can express it as a fraction).\newlineCalculation: x=257x = \frac{25}{7}.

More problems from Quotient property of logarithms