Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(5)(5x)+log_(5)(2)=0
Answer:

Solve for the exact value of x x .\newlinelog5(5x)+log5(2)=0 \log _{5}(5 x)+\log _{5}(2)=0 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog5(5x)+log5(2)=0 \log _{5}(5 x)+\log _{5}(2)=0 \newlineAnswer:
  1. Apply Product Rule: Use the property of logarithms that allows us to combine the two logarithms into one by using the product rule.\newlineThe product rule states that logb(m)+logb(n)=logb(mn)\log_b(m) + \log_b(n) = \log_b(m*n) for any base bb.\newlineSo, log5(5x)+log5(2)=log5(5x2)\log_{5}(5x) + \log_{5}(2) = \log_{5}(5x*2).
  2. Simplify Expression: Simplify the expression inside the logarithm.\newline5x×25x \times 2 simplifies to 10x10x.\newlineSo, log5(5x)+log5(2)=log5(10x)\log_{5}(5x) + \log_{5}(2) = \log_{5}(10x).
  3. Set Equal to Zero: Set the logarithmic expression equal to zero, as given in the equation. log5(10x)=0\log_{5}(10x) = 0.
  4. Convert to Exponential Form: Convert the logarithmic equation to its exponential form.\newlineThe exponential form of logb(a)=c\log_b(a) = c is bc=ab^c = a.\newlineSo, 50=10x5^0 = 10x.
  5. Solve for x: Solve for x.\newline505^0 is equal to 11, so 1=10x1 = 10x.\newlineDivide both sides by 1010 to isolate xx.\newlinex=110x = \frac{1}{10}.

More problems from Product property of logarithms