Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(5)(4x)-2log_(5)(4)=1
Answer:

Solve for the exact value of x x .\newlinelog5(4x)2log5(4)=1 \log _{5}(4 x)-2 \log _{5}(4)=1 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog5(4x)2log5(4)=1 \log _{5}(4 x)-2 \log _{5}(4)=1 \newlineAnswer:
  1. Apply Power Rule: Apply the power rule of logarithms to the term 2log5(4)2\log_5(4). The power rule states that nlogb(a)=logb(an)n\log_b(a) = \log_b(a^n). Therefore, we can rewrite the equation as: log5(4x)log5(42)=1\log_5(4^x) - \log_5(4^2) = 1
  2. Simplify Term: Simplify the term 424^2. Calculating 424^2 gives us 1616. So the equation now becomes: log5(4x)log5(16)=1\log_5(4x) - \log_5(16) = 1
  3. Apply Quotient Rule: Apply the quotient rule of logarithms to combine the logarithms on the left side.\newlineThe quotient rule states that logb(a)logb(c)=logb(ac)\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right). Therefore, we can combine the logarithms:\newlinelog5(4x16)=1\log_5\left(\frac{4x}{16}\right) = 1
  4. Simplify Fraction: Simplify the fraction inside the logarithm.\newlineSimplifying 4x16\frac{4x}{16} gives us x4\frac{x}{4}. So the equation now becomes:\newlinelog5(x4)=1\log_5\left(\frac{x}{4}\right) = 1
  5. Convert to Exponential Form: Convert the logarithmic equation to its exponential form.\newlineUsing the definition of a logarithm, we can rewrite the equation as:\newline51=x45^1 = \frac{x}{4}
  6. Solve for x: Solve for x.\newlineMultiplying both sides by 44 to isolate xx gives us:\newlinex=5×4x = 5 \times 4\newlinex=20x = 20

More problems from Product property of logarithms