Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(4)(9x)-4log_(4)(3)=0
Answer:

Solve for the exact value of x x .\newlinelog4(9x)4log4(3)=0 \log _{4}(9 x)-4 \log _{4}(3)=0 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog4(9x)4log4(3)=0 \log _{4}(9 x)-4 \log _{4}(3)=0 \newlineAnswer:
  1. Apply power rule: Apply the power rule of logarithms to simplify the term with the coefficient.\newlineThe power rule of logarithms states that nlogb(a)=logb(an)n\log_b(a) = \log_b(a^n). Let's apply this to the term 4log4(3)4\log_4(3).\newline4log4(3)=log4(34)4\log_4(3) = \log_4(3^4)
  2. Calculate value: Calculate the value of 343^4. \newline34=3×3×3×3=813^4 = 3 \times 3 \times 3 \times 3 = 81
  3. Rewrite equation: Rewrite the equation using the result from Step 22.\newlinelog4(9x)log4(81)=0\log_4(9x) - \log_4(81) = 0
  4. Apply quotient rule: Apply the quotient rule of logarithms to combine the logarithms.\newlineThe quotient rule of logarithms states that logb(a)logb(c)=logb(ac)\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right). Let's apply this to combine the logarithms.\newlinelog4(9x81)=0\log_4\left(\frac{9x}{81}\right) = 0
  5. Simplify fraction: Simplify the fraction inside the logarithm. \newline9x81=x9\frac{9x}{81} = \frac{x}{9}\newlineSo, log4(x9)=0\log_4\left(\frac{x}{9}\right) = 0
  6. Convert to exponential: Convert the logarithmic equation to an exponential equation.\newlineIf logb(a)=c\log_b(a) = c, then bc=ab^c = a. Let's apply this to solve for xx.\newline40=x94^0 = \frac{x}{9}
  7. Calculate value: Calculate the value of 404^0.\newline40=14^0 = 1
  8. Solve for x: Solve for x.\newlinex9=1\frac{x}{9} = 1\newlinex=9x = 9

More problems from Quotient property of logarithms