Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(4)(8x)-log_(4)(8)=3
Answer:

Solve for the exact value of x x .\newlinelog4(8x)log4(8)=3 \log _{4}(8 x)-\log _{4}(8)=3 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog4(8x)log4(8)=3 \log _{4}(8 x)-\log _{4}(8)=3 \newlineAnswer:
  1. Combine logarithms: Apply the quotient rule of logarithms to combine the two logarithms into one.\newlineQuotient rule of logarithms: logb(a)logb(c)=logb(ac)\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right)\newlinelog4(8x)log4(8)=log4(8x8)\log_4(8x) - \log_4(8) = \log_4\left(\frac{8x}{8}\right)\newlineSimplify the fraction inside the logarithm.\newlinelog4(8x8)=log4(x)\log_4\left(\frac{8x}{8}\right) = \log_4(x)
  2. Simplify fraction: Set the combined logarithm equal to 33. \newlinelog4(x)=3\log_4(x) = 3\newlineNow, we need to rewrite this logarithmic equation in exponential form.\newline43=x4^3 = x\newlineCalculate the value of 434^3.\newline43=644^3 = 64
  3. Set equal to 33: Solve for xx.x=64x = 64

More problems from Quotient property of logarithms