Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(4)(3x)-2log_(4)(2)=2
Answer:

Solve for the exact value of x x .\newlinelog4(3x)2log4(2)=2 \log _{4}(3 x)-2 \log _{4}(2)=2 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog4(3x)2log4(2)=2 \log _{4}(3 x)-2 \log _{4}(2)=2 \newlineAnswer:
  1. Apply Power Rule: Let's start by applying the power rule of logarithms to the term with the coefficient of 22.\newlinePower rule of logarithm: logb(an)=nlogb(a)\log_b(a^n) = n \cdot \log_b(a)\newline2log4(2)=log4(22)2\log_4(2) = \log_4(2^2)
  2. Rewrite Equation: Now, we rewrite the equation using the result from the power rule.\newlinelog4(3x)log4(22)=2\log_4(3x) - \log_4(2^2) = 2\newlinelog4(3x)log4(4)=2\log_4(3x) - \log_4(4) = 2
  3. Combine Logarithmic Terms: Next, we apply the quotient rule of logarithms to combine the logarithmic terms on the left side.\newlineQuotient rule of logarithm: logb(a)logb(c)=logb(ac)\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right)\newlinelog4(3x4)=2\log_4\left(\frac{3x}{4}\right) = 2
  4. Convert to Exponential Form: To solve for xx, we need to rewrite the logarithmic equation in exponential form.42=3x44^2 = \frac{3x}{4}
  5. Solve for x: Now, we solve for xx by multiplying both sides of the equation by 44 and then dividing by 33.16×4=3x16 \times 4 = 3x64=3x64 = 3xx=643x = \frac{64}{3}

More problems from Quotient property of logarithms