Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(4)(2x)-3log_(4)(9)=0
Answer:

Solve for the exact value of x x .\newlinelog4(2x)3log4(9)=0 \log _{4}(2 x)-3 \log _{4}(9)=0 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog4(2x)3log4(9)=0 \log _{4}(2 x)-3 \log _{4}(9)=0 \newlineAnswer:
  1. Apply Power Rule: Let's start by applying the power rule of logarithms to the term with the coefficient of 33. \newlinePower rule of logarithms: logb(an)=nlogb(a)\log_b(a^n) = n \cdot \log_b(a)\newline3log4(9)=log4(93)3\log_4(9) = \log_4(9^3)
  2. Rewrite Equation: Now, let's rewrite the equation using the result from the previous step. log4(2x)log4(93)=0\log_4(2x) - \log_4(9^3) = 0
  3. Combine Logarithmic Expressions: Next, we can apply the quotient rule of logarithms to combine the two logarithmic expressions into a single logarithm.\newlineQuotient rule of logarithms: logb(a)logb(c)=logb(ac)\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right)\newlinelog4(2x93)=0\log_4\left(\frac{2x}{9^3}\right) = 0
  4. Rewrite in Exponential Form: To solve for xx, we need to rewrite the logarithmic equation in exponential form.\newlineIf logb(a)=c\log_b(a) = c, then bc=ab^c = a\newline40=2x934^0 = \frac{2x}{9^3}
  5. Solve for x: Since 404^0 is equal to 11, we can now solve for xx.\newline1=2x931 = \frac{2x}{9^3}
  6. Isolate xx: Multiply both sides of the equation by 939^3 to isolate xx on one side.\newline93=2x9^3 = 2x
  7. Divide by 22: Now, divide both sides by 22 to solve for x.\newlinex=932x = \frac{9^3}{2}
  8. Calculate xx: Calculate the value of 939^3 and then divide by 22.93=7299^3 = 729x=7292x = \frac{729}{2}
  9. Calculate x: Calculate the value of 939^3 and then divide by 22. \newline93=7299^3 = 729\newlinex=729/2x = 729 / 2 Finally, we get the exact value of xx.\newlinex=364.5x = 364.5

More problems from Quotient property of logarithms