Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(3)(6x)+log_(3)(2)=3
Answer:

Solve for the exact value of x x .\newlinelog3(6x)+log3(2)=3 \log _{3}(6 x)+\log _{3}(2)=3 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog3(6x)+log3(2)=3 \log _{3}(6 x)+\log _{3}(2)=3 \newlineAnswer:
  1. Combine Logarithms: Combine the logarithms using the product rule.\newlineThe product rule of logarithms states that logb(m)+logb(n)=logb(mn)\log_b(m) + \log_b(n) = \log_b(m*n). Let's apply this rule to combine the two logarithms on the left side of the equation.\newlinelog3(6x)+log3(2)=log3(6x2)\log_3(6x) + \log_3(2) = \log_3(6x \cdot 2)\newlineSimplify the product inside the logarithm.\newlinelog3(12x)=3\log_3(12x) = 3
  2. Simplify Product: Convert the logarithmic equation to an exponential equation.\newlineThe definition of a logarithm states that if logb(a)=c\log_b(a) = c, then bc=ab^c = a. We will use this definition to rewrite the equation in exponential form.\newline33=12x3^3 = 12x\newlineCalculate the value of 333^3.\newline27=12x27 = 12x
  3. Convert to Exponential: Solve for xx.\newlineTo find the value of xx, divide both sides of the equation by 1212.\newline2712=x\frac{27}{12} = x\newlineSimplify the fraction.\newlinex=2712x = \frac{27}{12}\newlinex=94x = \frac{9}{4}\newlinex=2.25x = 2.25

More problems from Quotient property of logarithms