Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(2)(9x)-log_(2)(2)=5
Answer:

Solve for the exact value of x x .\newlinelog2(9x)log2(2)=5 \log _{2}(9 x)-\log _{2}(2)=5 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog2(9x)log2(2)=5 \log _{2}(9 x)-\log _{2}(2)=5 \newlineAnswer:
  1. Apply Quotient Rule: Apply the quotient rule of logarithms to combine the two logarithmic expressions into one.\newlineQuotient rule of logarithm: log2(a)log2(b)=log2(ab)\log_2(a) - \log_2(b) = \log_2\left(\frac{a}{b}\right)\newlinelog2(9x)log2(2)=log2(9x2)\log_2(9x) - \log_2(2) = \log_2\left(\frac{9x}{2}\right)
  2. Use Logarithm Property: Rewrite the equation using the property of logarithms that states if log2(a)=b\log_2(a) = b, then 2b=a2^b = a.log2(9x2)=5\log_2(\frac{9x}{2}) = 5 implies 25=9x22^5 = \frac{9x}{2}
  3. Calculate and Solve: Calculate 252^5 and solve for xx.\newline25=322^5 = 32, so 32=9x232 = \frac{9x}{2}
  4. Isolate 9x9x: Multiply both sides of the equation by 22 to isolate 9x9x on one side.\newline2×32=9x2 \times 32 = 9x\newline64=9x64 = 9x
  5. Divide by 99: Divide both sides of the equation by 99 to solve for xx.x=649x = \frac{64}{9}

More problems from Quotient property of logarithms