Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

6ln(4x+9)+4=-14
Answer:

Solve for the exact value of x x .\newline6ln(4x+9)+4=14 6 \ln (4 x+9)+4=-14 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newline6ln(4x+9)+4=14 6 \ln (4 x+9)+4=-14 \newlineAnswer:
  1. Isolate natural logarithm term: First, we need to isolate the natural logarithm term on one side of the equation. We can do this by subtracting 44 from both sides of the equation.\newline6ln(4x+9)+44=1446\ln(4x+9) + 4 - 4 = -14 - 4\newline6ln(4x+9)=186\ln(4x+9) = -18
  2. Divide by 66: Next, we divide both sides of the equation by 66 to solve for the natural logarithm of (4x+9)(4x+9).6ln(4x+9)6=186\frac{6\ln(4x+9)}{6} = \frac{-18}{6}ln(4x+9)=3\ln(4x+9) = -3
  3. Exponentiate to remove ln: Now, we will exponentiate both sides of the equation to remove the natural logarithm. We use the property that eln(x)=xe^{\ln(x)} = x.\newlineeln(4x+9)=e3e^{\ln(4x+9)} = e^{-3}\newline4x+9=e34x+9 = e^{-3}
  4. Subtract 99: We then subtract 99 from both sides of the equation to isolate the term with xx.\newline4x+99=e394x+9 - 9 = e^{-3} - 9\newline4x=e394x = e^{-3} - 9
  5. Divide by 44: Finally, we divide both sides by 44 to solve for xx.4x4=e(3)94\frac{4x}{4} = \frac{e^{(-3)} - 9}{4}x=e(3)94x = \frac{e^{(-3)} - 9}{4}