Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

3ln(8x-8)+11=2
Answer:

Solve for the exact value of x x .\newline3ln(8x8)+11=2 3 \ln (8 x-8)+11=2 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newline3ln(8x8)+11=2 3 \ln (8 x-8)+11=2 \newlineAnswer:
  1. Isolate natural logarithm term: Isolate the natural logarithm term.\newlineWe start by subtracting 1111 from both sides of the equation to isolate the term with the natural logarithm.\newline3ln(8x8)+1111=2113\ln(8x-8) + 11 - 11 = 2 - 11\newline3ln(8x8)=93\ln(8x-8) = -9
  2. Divide to solve logarithm: Divide both sides by 33 to solve for the natural logarithm of the expression.3ln(8x8)3=93\frac{3\ln(8x-8)}{3} = \frac{-9}{3}ln(8x8)=3\ln(8x-8) = -3
  3. Exponentiate to remove logarithm: Exponentiate both sides to remove the natural logarithm.\newlineeln(8x8)=e3e^{\ln(8x-8)} = e^{-3}\newline8x8=e38x - 8 = e^{-3}
  4. Add to solve for 8x8x: Add 88 to both sides to solve for 8x8x.\newline8x8+8=e3+88x - 8 + 8 = e^{-3} + 8\newline8x=e3+88x = e^{-3} + 8
  5. Divide to solve for x: Divide both sides by 88 to solve for xx.\newline8x8=e(3)+88\frac{8x}{8} = \frac{e^{(-3)} + 8}{8}\newlinex=e(3)+88x = \frac{e^{(-3)} + 8}{8}

More problems from Precision