Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

2ln(8x-8)-6=-10
Answer:

Solve for the exact value of x x .\newline2ln(8x8)6=10 2 \ln (8 x-8)-6=-10 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newline2ln(8x8)6=10 2 \ln (8 x-8)-6=-10 \newlineAnswer:
  1. Isolate natural logarithm term: Isolate the natural logarithm term.\newlineWe start by adding 66 to both sides of the equation to isolate the natural logarithm term.\newline2ln(8x8)6+6=10+62\ln(8x-8) - 6 + 6 = -10 + 6\newline2ln(8x8)=42\ln(8x-8) = -4
  2. Divide to solve logarithm: Divide both sides by 22 to solve for the natural logarithm of the expression.2ln(8x8)2=42\frac{2\ln(8x-8)}{2} = \frac{-4}{2}ln(8x8)=2\ln(8x-8) = -2
  3. Exponentiate to remove logarithm: Exponentiate both sides to remove the natural logarithm.\newlineWe raise ee to the power of both sides of the equation to remove the natural logarithm.\newlineeln(8x8)=e2e^{\ln(8x-8)} = e^{-2}\newline8x8=e28x - 8 = e^{-2}
  4. Solve for x: Solve for x.\newlineWe add 88 to both sides and then divide by 88 to solve for xx.\newline8x8+8=e2+88x - 8 + 8 = e^{-2} + 8\newline8x=e2+88x = e^{-2} + 8\newlinex=e2+88x = \frac{e^{-2} + 8}{8}

More problems from Precision