Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

2ln(2x-4)+6=16
Answer:

Solve for the exact value of x x .\newline2ln(2x4)+6=16 2 \ln (2 x-4)+6=16 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newline2ln(2x4)+6=16 2 \ln (2 x-4)+6=16 \newlineAnswer:
  1. Isolate Logarithmic Expression: Isolate the logarithmic expression by subtracting 66 from both sides of the equation.\newline2ln(2x4)+66=1662\ln(2x-4) + 6 - 6 = 16 - 6\newline2ln(2x4)=102\ln(2x-4) = 10
  2. Divide to Solve Natural Logarithm: Divide both sides of the equation by 22 to solve for the natural logarithm of (2x4)(2x-4). \newline2ln(2x4)2=102\frac{2\ln(2x-4)}{2} = \frac{10}{2}\newlineln(2x4)=5\ln(2x-4) = 5
  3. Exponentiate to Remove Logarithm: Exponentiate both sides of the equation to remove the natural logarithm, using the property eln(x)=xe^{\ln(x)} = x.\newlineeln(2x4)=e5e^{\ln(2x-4)} = e^5\newline2x4=e52x - 4 = e^5
  4. Add to Isolate Term: Add 44 to both sides of the equation to isolate the term with xx.\newline2x4+4=e5+42x - 4 + 4 = e^5 + 4\newline2x=e5+42x = e^5 + 4
  5. Divide to Solve for x: Divide both sides of the equation by 22 to solve for x.\newline2x2=e5+42\frac{2x}{2} = \frac{e^5 + 4}{2}\newlinex=e5+42x = \frac{e^5 + 4}{2}

More problems from Precision