Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for jj.\newline3(j+18)+173(j + 18) + 1 \geq 7

Full solution

Q. Solve for jj.\newline3(j+18)+173(j + 18) + 1 \geq 7
  1. Distribute and Simplify: First, distribute the 33 into the parentheses.3(j+18)+173(j + 18) + 1 \geq 73j+3(18)+173j + 3(18) + 1 \geq 73j+54+173j + 54 + 1 \geq 7
  2. Combine Like Terms: Combine like terms on the left side of the inequality.\newline3j+54+173j + 54 + 1 \geq 7\newline3j+5573j + 55 \geq 7
  3. Isolate Variable Term: Subtract 5555 from both sides to isolate the term with the variable jj. \newline3j+55557553j + 55 - 55 \geq 7 - 55\newline3j483j \geq -48
  4. Solve for j: Divide both sides by 33 to solve for j.\newline3j3483\frac{3j}{3} \geq \frac{-48}{3}\newlinej16j \geq -16

More problems from Solve linear inequalities