Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for all values of 
x.

(x-7)/(x+8)=(3)/(x)
Answer: 
x=

Solve for all values of x x .\newlinex7x+8=3x \frac{x-7}{x+8}=\frac{3}{x} \newlineAnswer: x= x=

Full solution

Q. Solve for all values of x x .\newlinex7x+8=3x \frac{x-7}{x+8}=\frac{3}{x} \newlineAnswer: x= x=
  1. Cross-multiply fractions: Cross-multiply to eliminate the fractions.\newline(x7)×x=3×(x+8)(x - 7) \times x = 3 \times (x + 8)
  2. Distribute and simplify: Distribute to simplify both sides of the equation. x27x=3x+24x^2 - 7x = 3x + 24
  3. Move terms and set to zero: Move all terms to one side to set the equation to zero.\newlinex27x3x24=0x^2 - 7x - 3x - 24 = 0\newlinex210x24=0x^2 - 10x - 24 = 0
  4. Factor quadratic equation: Factor the quadratic equation.\newline(x12)(x+2)=0(x - 12)(x + 2) = 0
  5. Solve for xx: Set each factor equal to zero and solve for xx.x12=0x - 12 = 0 or x+2=0x + 2 = 0x=12x = 12 or x=2x = -2
  6. Check for extraneous solutions: Check for extraneous solutions by plugging the values back into the original equation.\newlineFor x=12x = 12:\newline(127)/(12+8)=3/12(12 - 7) / (12 + 8) = 3 / 12\newline5/20=3/125 / 20 = 3 / 12\newline1/4=1/41 / 4 = 1 / 4 (True, so x=12x = 12 is a valid solution)\newlineFor x=2x = -2:\newline(27)/(2+8)=3/2(-2 - 7) / (-2 + 8) = 3 / -2\newline9/6=3/2-9 / 6 = 3 / -2\newline3/2=3/2-3 / 2 = 3 / -2 (True, but x=2x = -2 is not a valid solution because it makes the denominator of the original equation's right side zero)