Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for all values of 
x.

(x+3)/(x-4)=(-5)/(x)
Answer: 
x=

Solve for all values of x x .\newlinex+3x4=5x \frac{x+3}{x-4}=\frac{-5}{x} \newlineAnswer: x= x=

Full solution

Q. Solve for all values of x x .\newlinex+3x4=5x \frac{x+3}{x-4}=\frac{-5}{x} \newlineAnswer: x= x=
  1. Cross-multiply fractions: Cross-multiply to eliminate the fractions. (x+3)x=(5)(x4) (x + 3) \cdot x = (-5) \cdot (x - 4)
  2. Distribute equation sides: Distribute both sides of the equation. x2+3x=5x+20x^2 + 3x = -5x + 20
  3. Move terms set zero: Move all terms to one side to set the equation to zero. x2+3x+5x20=0x^2 + 3x + 5x - 20 = 0
  4. Combine like terms: Combine like terms. x2+8x20=0x^2 + 8x - 20 = 0
  5. Factor quadratic equation: Factor the quadratic equation, if possible.\newlineHowever, the quadratic x2+8x20x^2 + 8x - 20 does not factor nicely. We will use the quadratic formula instead.
  6. Apply quadratic formula: Apply the quadratic formula.\newlinex=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=1a = 1, b=8b = 8, and c=20c = -20.
  7. Calculate discriminant: Calculate the discriminant (b24ac)(b^2 - 4ac). Discriminant = (8)24(1)(20)=64+80=144(8)^2 - 4(1)(-20) = 64 + 80 = 144
  8. Calculate solutions: Calculate the two solutions using the quadratic formula.\newlinex=8±1442(1)x = \frac{{-8 \pm \sqrt{144}}}{{2(1)}}\newlinex=8±122x = \frac{{-8 \pm 12}}{{2}}
  9. Solve for x values: Solve for the two values of x.\newlinex=(8+12)/2=4/2=2x = (-8 + 12) / 2 = 4 / 2 = 2\newlinex=(812)/2=20/2=10x = (-8 - 12) / 2 = -20 / 2 = -10
  10. Check extraneous solutions: Check for extraneous solutions by plugging the values back into the original equation.\newlineFor x=2x = 2:\newline(2+3)/(24)=(5)/2(2+3)/(2-4) = (-5)/2\newline5/(2)=(5)/25/(-2) = (-5)/2\newline5/2=5/2-5/2 = -5/2 (Valid solution)\newlineFor x=10x = -10:\newline(10+3)/(104)=(5)/(10)(-10+3)/(-10-4) = (-5)/(-10)\newline7/(14)=1/2-7/(-14) = 1/2\newline1/2=1/21/2 = 1/2 (Valid solution)\newlineBoth solutions are valid and do not create any undefined conditions in the original equation.

More problems from Find the roots of factored polynomials