Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for all values of 
x in simplest form.

10+|2x+5|=22
Answer: 
x=

Solve for all values of x x in simplest form.\newline10+2x+5=22 10+|2 x+5|=22 \newlineAnswer: x= x=

Full solution

Q. Solve for all values of x x in simplest form.\newline10+2x+5=22 10+|2 x+5|=22 \newlineAnswer: x= x=
  1. Isolate absolute value: Write down the equation and isolate the absolute value expression.\newlineWe have the equation 10+2x+5=2210 + |2x + 5| = 22. To isolate the absolute value, we subtract 1010 from both sides of the equation.\newline10+2x+510=221010 + |2x + 5| - 10 = 22 - 10\newline2x+5=12|2x + 5| = 12
  2. Set up equations: Set up two separate equations to account for the absolute value.\newlineSince the absolute value of a number can be either positive or negative, we have two cases:\newline2x+5=122x + 5 = 12 or 2x+5=122x + 5 = -12
  3. Solve positive case: Solve the first equation where the inside of the absolute value is positive.\newline2x+5=122x + 5 = 12\newlineSubtract 55 from both sides:\newline2x=1252x = 12 - 5\newline2x=72x = 7\newlineDivide both sides by 22:\newlinex=72x = \frac{7}{2}\newlinex=3.5x = 3.5
  4. Solve negative case: Solve the second equation where the inside of the absolute value is negative.\newline2x+5=122x + 5 = -12\newlineSubtract 55 from both sides:\newline2x=1252x = -12 - 5\newline2x=172x = -17\newlineDivide both sides by 22:\newlinex=172x = \frac{-17}{2}\newlinex=8.5x = -8.5

More problems from Solve logarithmic equations with multiple logarithms