Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for all values of 
x :

(9x-2)-(9x-2)^(2)=0
Answer: 
x=

Solve for all values of x x :\newline(9x2)(9x2)2=0 (9 x-2)-(9 x-2)^{2}=0 \newlineAnswer: x= x=

Full solution

Q. Solve for all values of x x :\newline(9x2)(9x2)2=0 (9 x-2)-(9 x-2)^{2}=0 \newlineAnswer: x= x=
  1. Expand and Simplify: Simplify the equation by expanding the squared term.\newlineWe have the equation (9x2)(9x2)2=0(9x-2)-(9x-2)^{2}=0. Let's expand the squared term.\newline(9x2)(9x2)(9x2)=0(9x-2) - (9x-2)\cdot(9x-2) = 0
  2. Distribute Negative Sign: Distribute the negative sign through the squared term.\newlineWe need to apply the negative sign to each term in the squared expression.\newline(9x2)[(9x2)(9x2)]=0(9x-2) - [(9x-2)*(9x-2)] = 0\newline(9x2)[81x236x+4]=0(9x-2) - [81x^2 - 36x + 4] = 0
  3. Combine Like Terms: Combine like terms.\newlineNow we combine the like terms on the left side of the equation.\newline9x281x2+36x4=09x - 2 - 81x^2 + 36x - 4 = 0
  4. Factor Out Common Factor: Continue combining like terms.\newlineCombine the xx terms and the constant terms.\newline81x2+45x6=0-81x^2 + 45x - 6 = 0
  5. Find Quadratic Factors: Factor out the greatest common factor.\newlineWe can factor out a 33 from each term.\newline27x2+15x2=0-27x^2 + 15x - 2 = 0
  6. Apply Quadratic Formula: Look for factors of the quadratic equation.\newlineThis is a quadratic equation in the form ax2+bx+c=0ax^2 + bx + c = 0. We need to find factors or use the quadratic formula to solve for xx. However, this equation does not factor nicely, so we will use the quadratic formula.\newlinex=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
  7. Simplify and Solve: Apply the quadratic formula.\newlineLet's plug in the values a=27a = -27, b=15b = 15, and c=2c = -2 into the quadratic formula.\newlinex=15±1524(27)(2)2(27)x = \frac{-15 \pm \sqrt{15^2 - 4(-27)(-2)}}{2(-27)}\newlinex=15±22521654x = \frac{-15 \pm \sqrt{225 - 216}}{-54}
  8. Simplify and Solve: Apply the quadratic formula.\newlineLet's plug in the values a=27a = -27, b=15b = 15, and c=2c = -2 into the quadratic formula.\newlinex=15±1524(27)(2)2(27)x = \frac{-15 \pm \sqrt{15^2 - 4(-27)(-2)}}{2(-27)}\newlinex=15±22521654x = \frac{-15 \pm \sqrt{225 - 216}}{-54} Simplify under the square root and solve for x.\newlinex=15±954x = \frac{-15 \pm \sqrt{9}}{-54}\newlinex=15±354x = \frac{-15 \pm 3}{-54}
  9. Simplify and Solve: Apply the quadratic formula.\newlineLet's plug in the values a=27a = -27, b=15b = 15, and c=2c = -2 into the quadratic formula.\newlinex=15±1524(27)(2)2(27)x = \frac{-15 \pm \sqrt{15^2 - 4(-27)(-2)}}{2(-27)}\newlinex=15±22521654x = \frac{-15 \pm \sqrt{225 - 216}}{-54} Simplify under the square root and solve for x.\newlinex=15±954x = \frac{-15 \pm \sqrt{9}}{-54}\newlinex=15±354x = \frac{-15 \pm 3}{-54} Solve for the two possible values of x.\newlinex=(15+3)54x = \frac{(-15 + 3)}{-54} or x=(153)54x = \frac{(-15 - 3)}{-54}\newlinex=12/54x = -12 / -54 or b=15b = 1500
  10. Simplify and Solve: Apply the quadratic formula.\newlineLet's plug in the values a=27a = -27, b=15b = 15, and c=2c = -2 into the quadratic formula.\newlinex=15±1524(27)(2)2(27)x = \frac{-15 \pm \sqrt{15^2 - 4(-27)(-2)}}{2(-27)}\newlinex=15±22521654x = \frac{-15 \pm \sqrt{225 - 216}}{-54} Simplify under the square root and solve for x.\newlinex=15±954x = \frac{-15 \pm \sqrt{9}}{-54}\newlinex=15±354x = \frac{-15 \pm 3}{-54} Solve for the two possible values of x.\newlinex=(15+3)(54)x = \frac{(-15 + 3)}{(-54)} or x=(153)(54)x = \frac{(-15 - 3)}{(-54)}\newlinex=1254x = \frac{-12}{-54} or b=15b = 1500 Simplify both fractions.\newlineb=15b = 1511 or b=15b = 1522

More problems from Composition of linear and quadratic functions: find a value