Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for all values of 
x :

7(4x+3)-(4x+3)^(2)=0
Answer: 
x=

Solve for all values of x x :\newline7(4x+3)(4x+3)2=0 7(4 x+3)-(4 x+3)^{2}=0 \newlineAnswer: x= x=

Full solution

Q. Solve for all values of x x :\newline7(4x+3)(4x+3)2=0 7(4 x+3)-(4 x+3)^{2}=0 \newlineAnswer: x= x=
  1. Expand Equation: Expand the equation to simplify it.\newlineWe have the equation 7(4x+3)(4x+3)2=07(4x+3)-(4x+3)^2=0. Let's first expand the squared term (4x+3)2(4x+3)^2.\newline(4x+3)2=(4x+3)(4x+3)=16x2+12x+12x+9=16x2+24x+9(4x+3)^2 = (4x+3)(4x+3) = 16x^2 + 12x + 12x + 9 = 16x^2 + 24x + 9
  2. Substitute Expanded Term: Substitute the expanded squared term back into the equation.\newlineNow we substitute the expanded (4x+3)2(4x+3)^2 back into the original equation:\newline7(4x+3)(16x2+24x+9)=07(4x+3) - (16x^2 + 24x + 9) = 0
  3. Expand and Combine Terms: Expand the remaining term and combine like terms.\newlineNext, we expand 7(4x+3)7(4x+3) and subtract (16x2+24x+9)(16x^2 + 24x + 9) from it:\newline7(4x+3)=28x+217(4x+3) = 28x + 21\newlineSo the equation becomes:\newline28x+21(16x2+24x+9)=028x + 21 - (16x^2 + 24x + 9) = 0
  4. Distribute Negative Sign: Distribute the negative sign through the second set of parentheses.\newlineWe need to distribute the negative sign through the second set of parentheses:\newline28x+2116x224x9=028x + 21 - 16x^2 - 24x - 9 = 0
  5. Combine Like Terms: Combine like terms to form a quadratic equation.\newlineNow we combine like terms:\newline16x2+(28x24x)+(219)=0-16x^2 + (28x - 24x) + (21 - 9) = 0\newline16x2+4x+12=0-16x^2 + 4x + 12 = 0
  6. Factor Quadratic Equation: Factor the quadratic equation.\newlineWe need to factor the quadratic equation 16x2+4x+12=0-16x^2 + 4x + 12 = 0. We can factor out a 44:\newline4(4x2+x+3)=04(-4x^2 + x + 3) = 0\newlineNow we need to factor the quadratic expression in the parentheses. However, this expression does not factor nicely, so we may have made a mistake. Let's go back and check our previous steps.

More problems from Composition of linear and quadratic functions: find an equation