Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for all values of 
x :

(3x-2)^(2)+5(3x-2)=0
Answer: 
x=

Solve for all values of x x :\newline(3x2)2+5(3x2)=0 (3 x-2)^{2}+5(3 x-2)=0 \newlineAnswer: x= x=

Full solution

Q. Solve for all values of x x :\newline(3x2)2+5(3x2)=0 (3 x-2)^{2}+5(3 x-2)=0 \newlineAnswer: x= x=
  1. Denote u=3x2u = 3x - 2: Let's denote u=3x2u = 3x - 2 to simplify the equation. The equation becomes: u2+5u=0u^2 + 5u = 0
  2. Factor out uu: Now, factor out uu from the equation: u(u+5)=0u(u + 5) = 0
  3. Set factors equal to zero: Set each factor equal to zero to find the solutions for uu:u=0u = 0 or u+5=0u + 5 = 0
  4. Solve for u: Solve for u in each case:\newlineu=0u = 0 or u=5u = -5
  5. Substitute back for u: Now, substitute back 3x23x - 2 for uu to find the values of xx: \newline3x2=03x - 2 = 0 or 3x2=53x - 2 = -5
  6. Solve for x: Solve each equation for x:\newlineFor 3x2=03x - 2 = 0, we get x=23x = \frac{2}{3}.\newlineFor 3x2=53x - 2 = -5, we get x=1x = -1.

More problems from Composition of linear and quadratic functions: find a value