Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for all values of 
x :

3(2x+9)+(2x+9)^(2)=0
Answer: 
x=

Solve for all values of x x :\newline3(2x+9)+(2x+9)2=0 3(2 x+9)+(2 x+9)^{2}=0 \newlineAnswer: x= x=

Full solution

Q. Solve for all values of x x :\newline3(2x+9)+(2x+9)2=0 3(2 x+9)+(2 x+9)^{2}=0 \newlineAnswer: x= x=
  1. Expand Squared Term: Simplify the equation by expanding the terms.\newlineWe have the equation 3(2x+9)+(2x+9)2=03(2x+9)+(2x+9)^{2}=0. Let's expand the squared term first.\newline(2x+9)2=(2x+9)(2x+9)(2x+9)^{2} = (2x+9)(2x+9)
  2. Expand Equation: Continue expanding the equation.\newline(2x+9)(2x+9)=4x2+18x+18x+81(2x+9)(2x+9) = 4x^2 + 18x + 18x + 81\newlineCombine like terms.\newline4x2+36x+814x^2 + 36x + 81
  3. Substitute Expanded Term: Substitute the expanded squared term back into the original equation.\newline3(2x+9)+4x2+36x+81=03(2x+9) + 4x^2 + 36x + 81 = 0\newlineExpand the remaining term.\newline6x+27+4x2+36x+81=06x + 27 + 4x^2 + 36x + 81 = 0
  4. Combine Like Terms: Combine like terms.\newline4x2+42x+108=04x^2 + 42x + 108 = 0
  5. Factor Quadratic Equation: Factor the quadratic equation.\newlineWe look for two numbers that multiply to 4×1084\times108 and add up to 4242. However, since 4×1084\times108 is 432432 and 4242 is not a factor of 432432, we can't factor this easily. We should use the quadratic formula instead.
  6. Apply Quadratic Formula: Apply the quadratic formula.\newlinex=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\newlineHere, a=4a = 4, b=42b = 42, and c=108c = 108.\newlinex=42±4224410824x = \frac{-42 \pm \sqrt{42^2 - 4\cdot4\cdot108}}{2\cdot4}
  7. Calculate Discriminant: Calculate the discriminant b24acb^2 - 4ac.\newlineDiscriminant = 4224×4×10842^2 - 4\times4\times108\newlineDiscriminant = 176417281764 - 1728\newlineDiscriminant = 3636
  8. Two Real Solutions: Since the discriminant is positive, there are two real solutions.\newlinex=42±368x = \frac{-42 \pm \sqrt{36}}{8}\newlinex=42±68x = \frac{-42 \pm 6}{8}
  9. Solve for x Values: Solve for the two values of x.\newlineFirst solution:\newlinex=(42+6)/8x = (-42 + 6) / 8\newlinex=36/8x = -36 / 8\newlinex=4.5x = -4.5\newlineSecond solution:\newlinex=(426)/8x = (-42 - 6) / 8\newlinex=48/8x = -48 / 8\newlinex=6x = -6

More problems from Composition of linear and quadratic functions: find a value