Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve.


{:[2(2x-1)-(y-4)=11],[3(1-x)-2(y-3)=-7]:}

55. Solve.\newline2(2x1)(y4)=113(1x)2(y3)=7 \begin{array}{l} 2(2 x-1)-(y-4)=11 \\ 3(1-x)-2(y-3)=-7 \end{array}

Full solution

Q. 55. Solve.\newline2(2x1)(y4)=113(1x)2(y3)=7 \begin{array}{l} 2(2 x-1)-(y-4)=11 \\ 3(1-x)-2(y-3)=-7 \end{array}
  1. Expand and Simplify: First, we will expand the equations to simplify them.\newlineFor the first equation: 2(2x1)(y4)=112(2x - 1) - (y - 4) = 11\newlineExpand and simplify:\newline4x2y+4=114x - 2 - y + 4 = 11\newline4xy+2=114x - y + 2 = 11\newlineNow, isolate the terms involving variables:\newline4xy=1124x - y = 11 - 2\newline4xy=94x - y = 9
  2. Isolate Variables: For the second equation: 3(1x)2(y3)=73(1 - x) - 2(y - 3) = -7 Expand and simplify: 33x2y+6=73 - 3x - 2y + 6 = -7 3x2y+9=7-3x - 2y + 9 = -7 Now, isolate the terms involving variables: 3x2y=79-3x - 2y = -7 - 9 3x2y=16-3x - 2y = -16
  3. Expand and Simplify: Now we have a system of two equations:\newline4xy=94x - y = 9\newline3x2y=16-3x - 2y = -16\newlineWe will use the method of substitution or elimination to solve this system. Let's use elimination to eliminate one of the variables.\newlineTo eliminate yy, we can multiply the first equation by 22:\newline2(4xy)=2(9)2(4x - y) = 2(9)\newline8x2y=188x - 2y = 18
  4. Isolate Variables: Now we have the modified system of equations:\newline8x2y=188x - 2y = 18\newline3x2y=16-3x - 2y = -16\newlineWe will add these two equations to eliminate yy:\newline(8x2y)+(3x2y)=18+(16)(8x - 2y) + (-3x - 2y) = 18 + (-16)\newline8x3x2y2y=18168x - 3x - 2y - 2y = 18 - 16\newline5x4y=25x - 4y = 2\newlineThis is incorrect; we should have eliminated yy, but we ended up with an equation that still contains yy. Let's go back and correct this mistake.

More problems from Solve linear inequalities