Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify x2+6x+88x÷x+412\frac{x^{2}+6x+8}{8x} \div \frac{x+4}{12}

Full solution

Q. Simplify x2+6x+88x÷x+412\frac{x^{2}+6x+8}{8x} \div \frac{x+4}{12}
  1. Factorize numerator: Factor the numerator of the first fraction.\newlineWe need to factor the quadratic expression x2+6x+8x^2 + 6x + 8.\newlineThis can be factored into (x+2)(x+4)(x + 2)(x + 4).\newlineSo, (x2+6x+8)/(8x)(x^2 + 6x + 8)/(8x) becomes ((x+2)(x+4))/(8x)((x + 2)(x + 4))/(8x).
  2. Rewrite as reciprocal: Rewrite the division as multiplication by the reciprocal.\newlineThe expression (x2+6x+8)/(8x)÷(x+4)/(12)(x^{2}+6x+8)/(8x) \div (x+4)/(12) can be rewritten as ((x+2)(x+4))/(8x)×(12)/(x+4)((x + 2)(x + 4))/(8x) \times (12)/(x+4).
  3. Cancel common factors: Cancel out common factors.\newlineWe can cancel the (x+4)(x + 4) term in the numerator of the first fraction and the denominator of the second fraction.\newlineThis gives us (x+2)×128x\frac{(x + 2) \times 12}{8x}.
  4. Simplify expression: Simplify the expression.\newlineNow we simplify ((x+2)×12)/(8x)((x + 2) \times 12)/(8x) by dividing both the numerator and the denominator by 44.\newlineThis gives us (3(x+2))/(2x)(3(x + 2))/(2x).
  5. Distribute 33: Distribute the 33 in the numerator. Multiplying 33 by each term in the numerator gives us (3x+6)/(2x)(3x + 6)/(2x).

More problems from Divide polynomials using long division