Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to 
a+bi form:

sqrt49-sqrt(-200)+sqrt81+sqrt(-128)
Answer:

Simplify the expression to a+bi a+b i form:\newline49200+81+128 \sqrt{49}-\sqrt{-200}+\sqrt{81}+\sqrt{-128} \newlineAnswer:

Full solution

Q. Simplify the expression to a+bi a+b i form:\newline49200+81+128 \sqrt{49}-\sqrt{-200}+\sqrt{81}+\sqrt{-128} \newlineAnswer:
  1. Given expression: Given expression:\newline49200+81+128\sqrt{49}-\sqrt{-200}+\sqrt{81}+\sqrt{-128}\newlineExpress the expression using ii for the square roots of negative numbers.\newline49200i+81+128i\sqrt{49}-\sqrt{200}i+\sqrt{81}+\sqrt{128}i
  2. Express using ii: Simplify the square roots of the positive numbers and express the square roots of the negative numbers in terms of ii.
    49200i+81+128i\sqrt{49} - \sqrt{200}i + \sqrt{81} + \sqrt{128}i
    = 7102i+9+82i7 - 10\sqrt{2}i + 9 + 8\sqrt{2}i
  3. Simplify and combine: Combine like terms to get the expression in a+bia+bi form.7102i+9+82i7 - 10\sqrt{2}i + 9 + 8\sqrt{2}i=(7+9)+(102i+82i)= (7 + 9) + (-10\sqrt{2}i + 8\sqrt{2}i)=1622i= 16 - 2\sqrt{2}i

More problems from Simplify the expression using imaginary number i