Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to 
a+bi form:

sqrt144-sqrt(-90)+sqrt1-sqrt(-40)
Answer:

Simplify the expression to a+bi a+b i form:\newline14490+140 \sqrt{144}-\sqrt{-90}+\sqrt{1}-\sqrt{-40} \newlineAnswer: \newline\

Full solution

Q. Simplify the expression to a+bi a+b i form:\newline14490+140 \sqrt{144}-\sqrt{-90}+\sqrt{1}-\sqrt{-40} \newlineAnswer: \newline\
  1. Question Prompt: Question prompt: Simplify the expression to a+bia+bi form: 14490+140\sqrt{144}-\sqrt{-90}+\sqrt{1}-\sqrt{-40}.
  2. Given Expression: Given expression:\newline14490+140\sqrt{144}-\sqrt{-90}+\sqrt{1}-\sqrt{-40}\newlineExpress the expression using ii for the square roots of negative numbers.\newline14490i+140i\sqrt{144} - \sqrt{90}i + \sqrt{1} - \sqrt{40}i
  3. Express Using i: Simplify the square roots of the positive numbers and express the square roots of the negative numbers in terms of i.14490i+140i=1290i+140i\sqrt{144} - \sqrt{90}i + \sqrt{1} - \sqrt{40}i = 12 - \sqrt{90}i + 1 - \sqrt{40}i
  4. Simplify Square Roots: Simplify the square roots that are multiplied by ii.1290i+140i12 - \sqrt{90}i + 1 - \sqrt{40}i=129×10i+14×10i= 12 - \sqrt{9\times 10}i + 1 - \sqrt{4\times 10}i=12310i+1210i= 12 - 3\sqrt{10}i + 1 - 2\sqrt{10}i
  5. Simplify Multiplication: Combine like terms.\newline12310i+1210i12 - 3\sqrt{10}i + 1 - 2\sqrt{10}i\newline= (12+1)+(310i210i)(12 + 1) + (-3\sqrt{10}i - 2\sqrt{10}i)\newline= 13510i13 - 5\sqrt{10}i

More problems from Simplify the expression using imaginary number i