Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify each logarithm \newlinelog37+log38\log_{3}7+\log_{3}8

Full solution

Q. Simplify each logarithm \newlinelog37+log38\log_{3}7+\log_{3}8
  1. Identify Property: Identify the property of logarithms to simplify the sum.\newlineUsing the property that logb(a)+logb(b)=logb(ab)\log_b(a) + \log_b(b) = \log_b(ab), we can combine the logarithms.\newlinelog37+log38=log3(7×8)\log_{3}7 + \log_{3}8 = \log_{3}(7\times8)
  2. Combine Logarithms: Calculate the product inside the logarithm.\newline7×8=567 \times 8 = 56\newlineSo, log37+log38=log356\log_{3}7 + \log_{3}8 = \log_{3}56

More problems from Product property of logarithms