Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify 
e^(3ln 4+2) and write without any logarithms.
Answer:

Simplify e3ln4+2 e^{3 \ln 4+2} and write without any logarithms.\newlineAnswer:

Full solution

Q. Simplify e3ln4+2 e^{3 \ln 4+2} and write without any logarithms.\newlineAnswer:
  1. Apply power rule of logarithms: Apply the power rule of logarithms to the term 3ln(4)3\ln(4). The power rule states that aln(b)=ln(ba)a \cdot \ln(b) = \ln(b^a). Therefore, we can rewrite 3ln(4)3\ln(4) as ln(43)\ln(4^3). Calculation: 3ln(4)=ln(43)=ln(64)3\ln(4) = \ln(4^3) = \ln(64)
  2. Rewrite using result from Step 11: Rewrite the original expression using the result from Step 11.\newlineThe original expression is e3ln4+2e^{3\ln 4+2}. Using the result from Step 11, we can rewrite it as eln(64)+2e^{\ln(64)+2}.\newlineCalculation: eln(64)+2e^{\ln(64)+2}
  3. Use property of exponents: Use the property of exponents to separate the terms in the exponent.\newlineThe property ea+b=eaebe^{a+b} = e^a \cdot e^b allows us to separate the terms in the exponent.\newlineCalculation: eln(64)+2=eln(64)e2e^{\ln(64)+2} = e^{\ln(64)} \cdot e^2
  4. Simplify eln(64)e^{\ln(64)}: Simplify eln(64)e^{\ln(64)}.\newlineThe property eln(a)=ae^{\ln(a)} = a allows us to simplify eln(64)e^{\ln(64)} to just 6464.\newlineCalculation: eln(64)=64e^{\ln(64)} = 64
  5. Combine results from Step 33 and Step 44: Combine the results from Step 33 and Step 44.\newlineWe have eln(64)×e2e^{\ln(64)} \times e^2, which simplifies to 64×e264 \times e^2.\newlineCalculation: 64×e264 \times e^2

More problems from Change of base formula