Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify 
e^(2ln 4-3) and write without any logarithms.
Answer:

Simplify e2ln43 e^{2 \ln 4-3} and write without any logarithms.\newlineAnswer:

Full solution

Q. Simplify e2ln43 e^{2 \ln 4-3} and write without any logarithms.\newlineAnswer:
  1. Apply Logarithm Property: Apply the property of logarithms that allows us to move the coefficient in front of the logarithm to the exponent inside the logarithm.\newlineProperty: aln(b)=ln(ba)a \cdot \ln(b) = \ln(b^a)\newlineCalculation: 2ln(4)2\ln(4) becomes ln(42)\ln(4^2)\newlineMath error check:
  2. Simplify Inside Logarithm: Simplify the expression inside the logarithm.\newlineCalculation: 42=164^2 = 16\newlineMath error check:
  3. Rewrite Using Simplified Logarithm: Rewrite the expression using the simplified logarithm.\newlineCalculation: eln(16)3e^{\ln(16) - 3}\newlineMath error check:
  4. Apply Exponent Property: Apply the property of logarithms and exponents that states eln(x)=xe^{\ln(x)} = x.\newlineProperty: eln(x)=xe^{\ln(x)} = x\newlineCalculation: eln(16)=16e^{\ln(16)} = 16\newlineMath error check:
  5. Combine Exponential and Constant Terms: Simplify the expression by combining the exponential and constant terms.\newlineCalculation: 16×e316 \times e^{-3}\newlineMath error check:
  6. Calculate Constant: Recognize that e3e^{-3} is a constant that can be calculated.\newlineCalculation: e30.0498e^{-3} \approx 0.0498 (rounded to four decimal places)\newlineMath error check:
  7. Multiply to Get Final Answer: Multiply the constant e3e^{-3} by 1616 to get the final answer.\newlineCalculation: 16×0.04980.796816 \times 0.0498 \approx 0.7968 (rounded to four decimal places)\newlineMath error check:

More problems from Power property of logarithms