Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify: \newline(7×1013)(4.2×1015)(7\times10^{-13})-(4.2 \times10^{-15}).\newlineChoose 1 answer:\newline6.958×10156.958 \times10^{-15}\newline2.8×10152.8 \times10^{-15}\newline6.58×10136.58 \times10^{-13}\newline2.8×10132.8 \times10^{-13}

Full solution

Q. Simplify: \newline(7×1013)(4.2×1015)(7\times10^{-13})-(4.2 \times10^{-15}).\newlineChoose 1 answer:\newline6.958×10156.958 \times10^{-15}\newline2.8×10152.8 \times10^{-15}\newline6.58×10136.58 \times10^{-13}\newline2.8×10132.8 \times10^{-13}
  1. Express with same exponent: First, we need to express both numbers with the same exponent for 1010 to simplify the subtraction.\newlineWe have 7×10137\times10^{-13} and 4.2×10154.2\times10^{-15}. To combine these, we can convert 4.2×10154.2\times10^{-15} to a term with 101310^{-13} as its base.\newlineTo do this, we recognize that 101510^{-15} is 101310^{-13} times 10210^{-2}.\newlineSo, 4.2×1015=4.2×(1013×102)=4.2×1013×1024.2\times10^{-15} = 4.2\times(10^{-13}\times10^{-2}) = 4.2\times10^{-13}\times10^{-2}.\newlineNow we need to adjust the coefficient from 4.24.2 to account for the 10210^{-2} factor.\newline7×10137\times10^{-13}11.\newlineSo, 4.2×10154.2\times10^{-15} can be rewritten as 7×10137\times10^{-13}33.
  2. Combine numbers: Now we have both terms with the same power of 1010: 7×10137\times10^{-13} and 0.042×10130.042\times10^{-13}. We can now subtract the second term from the first term: (7×1013)(0.042×1013)=(70.042)×1013(7\times10^{-13}) - (0.042\times10^{-13}) = (7 - 0.042)\times10^{-13}.
  3. Perform subtraction: Perform the subtraction of the coefficients:\newline70.042=6.9587 - 0.042 = 6.958.\newlineSo, (7×1013)(0.042×1013)=6.958×1013(7\times10^{-13}) - (0.042\times10^{-13}) = 6.958\times10^{-13}.

More problems from Divide polynomials using long division