Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Show for all 
N inN\\{0} and all 
a!=1 :

(1)/(1-a)=(a^(N))/(1-a)+sum_(n=0)^(N-1)a^(n).
Use this result to find a formula for

sum_(n=0)^(oo)a^(n).
What assumption did you have to make to obtain a converging result?

Show for all NN{0}N \in \mathbb{N}\setminus\{0\} and all a1a \neq 1:\newline11a=aN1a+n=0N1an\frac{1}{1-a} = \frac{a^N}{1-a} + \sum_{n=0}^{N-1}a^n.\newlineUse this result to find a formula for\newlinen=0an\sum_{n=0}^{\infty}a^n.\newlineWhat assumption did you have to make to obtain a converging result?

Full solution

Q. Show for all NN{0}N \in \mathbb{N}\setminus\{0\} and all a1a \neq 1:\newline11a=aN1a+n=0N1an\frac{1}{1-a} = \frac{a^N}{1-a} + \sum_{n=0}^{N-1}a^n.\newlineUse this result to find a formula for\newlinen=0an\sum_{n=0}^{\infty}a^n.\newlineWhat assumption did you have to make to obtain a converging result?
  1. Evaluate RHS: We are given the equation:\newline11a=aN1a+n=0N1an\frac{1}{1-a} = \frac{a^N}{1-a} + \sum_{n=0}^{N-1}a^n\newlineWe need to show that this equation holds for all NN{0}N \in \mathbb{N}\setminus\{0\} and for all a1a \neq 1.\newlineLet's start by evaluating the right-hand side of the equation.
  2. Finite Geometric Series: First, we consider the finite geometric series n=0N1an\sum_{n=0}^{N-1}a^n. The formula for the sum of a finite geometric series is: SN=a0+a1+a2++aN1=1aN1aS_N = a^0 + a^1 + a^2 + \ldots + a^{N-1} = \frac{1 - a^N}{1 - a}, for a1a \neq 1.
  3. Substitute into RHS: Now, let's substitute SNS_N into the right-hand side of the given equation:\newlineaN1a+n=0N1an=aN1a+1aN1a\frac{a^N}{1-a} + \sum_{n=0}^{N-1}a^n = \frac{a^N}{1-a} + \frac{1 - a^N}{1 - a}.
  4. Simplify RHS: We simplify the right-hand side:\newline(a^N)/(\(1-a) + (11 - a^N) / (11 - a) = (a^N - a^N + 11) / (11 - a) = 11 / (11 - a)\.
  5. Show Equation Holds: We have shown that:\newline11a=aN1a+n=0N1an\frac{1}{1-a} = \frac{a^N}{1-a} + \sum_{n=0}^{N-1}a^n\newlineThis holds for all NN{0}N \in \mathbb{N}\setminus\{0\} and for all a1a \neq 1.
  6. Find Infinite Series Formula: Now, we want to find a formula for the infinite series n=0an\sum_{n=0}^{\infty}a^n. We assume that |a| < 1 for the series to converge.
  7. Limit as NN Approaches Infinity: As NN approaches infinity, aNa^N approaches 00 if |a| < 1. So, the sum of the infinite series is: limNSN=limN1aN1a=11a\lim_{N\to\infty} S_N = \lim_{N\to\infty} \frac{1 - a^N}{1 - a} = \frac{1}{1 - a}.
  8. Convergence Assumption: The assumption we made for the series to converge is that the absolute value of aa is less than 11, i.e., |a| < 1.

More problems from Find instantaneous rates of change