Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the following system of equations using an inverse matrix. You must also indicate the inverse matrix, A1A^{-1}, that was used to solve the system. You may optionally write the inverse matrix with a scalar coefficient.\newline 2x+7y=9-2x+7y=9 \newline3x+8y=4-3x+8y=4 \newlineA1=A^{-1}=\square\newlinex=x=\square\newliney=y=\square

Full solution

Q. Solve the following system of equations using an inverse matrix. You must also indicate the inverse matrix, A1A^{-1}, that was used to solve the system. You may optionally write the inverse matrix with a scalar coefficient.\newline 2x+7y=9-2x+7y=9 \newline3x+8y=4-3x+8y=4 \newlineA1=A^{-1}=\square\newlinex=x=\square\newliney=y=\square
  1. Write Equations in Matrix Form: First, let's write down the system of equations in matrix form. We have:\newline[2amp;73amp;8][xy]=[94] \begin{bmatrix} -2 & 7 \\ -3 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 9 \\ 4 \end{bmatrix}
  2. Calculate Determinant of Matrix A: Next, calculate the determinant of the matrix A, where A is:\newline[2amp;73amp;8] \begin{bmatrix} -2 & 7 \\ -3 & 8 \end{bmatrix} \newlineThe determinant, det(A), is calculated as:\newline(2)(8)(7)(3)=16+21=5 (-2)(8) - (7)(-3) = -16 + 21 = 5
  3. Find Inverse of Matrix A: Now, find the inverse of matrix A, A^(1-1). The formula for the inverse of a 22x22 matrix is:\newline1det(A)[damp;bcamp;a] \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \newlineApplying this to our matrix:\newlineA1=15[8amp;73amp;2] A^{-1} = \frac{1}{5} \begin{bmatrix} 8 & -7 \\ 3 & -2 \end{bmatrix}
  4. Multiply Inverse Matrix by Constant Matrix: Multiply the inverse matrix A^(1-1) by the constant matrix on the right side of the equation to find the values of x and y:\newline[8amp;73amp;2][94]=[89+(7)439+(2)4]=[7228278]=[4419] \begin{bmatrix} 8 & -7 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} 9 \\ 4 \end{bmatrix} = \begin{bmatrix} 8*9 + (-7)*4 \\ 3*9 + (-2)*4 \end{bmatrix} = \begin{bmatrix} 72 - 28 \\ 27 - 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 19 \end{bmatrix} \newlineHowever, we forgot to divide by the determinant, which is 55. Correcting this:\newlinex=445,y=195 x = \frac{44}{5}, \quad y = \frac{19}{5}

More problems from Conjugate root theorems