Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select all of the equations below that are equivalent to:\newline9=n+39 = n + -3\newlineUse properties of equality.\newlineMulti-select Choices:\newline(A) 64=(n+(3))864 = (n + (-3)) \cdot 8\newline(B) 77=7(n+(3))-77 = -7(n + (-3)) \newline(C) 90=(n+(3))1090 = (n + (-3)) \cdot 10\newline(D) 63=(n+(3))763 = (n + (-3)) \cdot 7

Full solution

Q. Select all of the equations below that are equivalent to:\newline9=n+39 = n + -3\newlineUse properties of equality.\newlineMulti-select Choices:\newline(A) 64=(n+(3))864 = (n + (-3)) \cdot 8\newline(B) 77=7(n+(3))-77 = -7(n + (-3)) \newline(C) 90=(n+(3))1090 = (n + (-3)) \cdot 10\newline(D) 63=(n+(3))763 = (n + (-3)) \cdot 7
  1. Understand Equation: Understand the original equation.\newline The original equation is 9=n+(3)9 = n + (-3).\newline To find equivalent equations, we can perform the same operation on both sides of the equation without changing its meaning.
  2. Check Equation (A): Check equation (A) 64=(n+(3))864 = (n + (\text{–}3)) \cdot 8.\newline Divide both sides of the equation 64=(n+(3))864 = (n + (\text{–}3)) \cdot 8 by 88:\newline 648=(n+(3))88\frac{64}{8} = \frac{(n + (\text{–}3)) \cdot 8}{8}\newline 8=n+(3)8 = n + (-3)\newline We have: 9=n+(3)9 = n + (-3)\newline Check if 88 equals 99.
  3. Equation (A) Comparison: Since 88 does not equal 99, equation (A) is not equivalent to the original equation.
  4. Check Equation (B): Check equation (B) 77=7(n+(3))-77 = -7(n + (-3)).\newline Divide both sides of the equation 77=7(n+(3))-77 = -7(n + (-3)) by 7-7:\newline 777=7(n+(3))7\frac{-77}{-7} = \frac{-7(n + (-3))}{-7}\newline 11=n+(3)11 = n + (-3)\newline We have: 9=n+(3)9 = n + (-3)\newline Check if 1111 equals 99.
  5. Equation (B) Comparison: Since 1111 does not equal 99, equation (B) is not equivalent to the original equation.
  6. Check Equation (C): Check equation (C) 90=(n+(3))1090 = (n + (–3)) \cdot 10.\newline Divide both sides of the equation 90=(n+(3))1090 = (n + (–3)) \cdot 10 by 1010:\newline 9010=(n+(3))1010\frac{90}{10} = \frac{(n + (\text{–}3)) \cdot 10}{10}\newline 9=n+(3)9 = n + (-3)\newline We have: 9=n+(3)9 = n + (-3)\newline Check if 99 equals 99.
  7. Equation (C) Comparison: Since 99 equals 99, equation (C) is equivalent to the original equation.
  8. Check Equation (D): Check equation (D) 63=(n+(3))763 = (n + (–3)) \cdot 7.\newline Divide both sides of the equation 63=(n+(3))763 = (n + (–3)) \cdot 7 by 77:\newline 637=(n+(3))77\frac{63}{7} = \frac{(n + (\text{–}3)) \cdot 7}{7}\newline 9=n+(3)9 = n + (-3)\newline We have: 9=n+(3)9 = n + (-3)\newline Check if 99 equals 99.
  9. Equation (D) Comparison: Since 99 equals 99, equation (D) is equivalent to the original equation.

More problems from Quadratic equation with complex roots